

Moving Analysis to the Data: Scalable Visualization Using Simulation Resources

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Volume rendering of x-velocity in time-step 1530 of a hydrodynamics simulation of a core-collapse supernova.

Tom Peterka

tpeterka@mcs.anl.gov

Mathematics and Computer Science Division

SIAM Minisymposium February 26, 2010

We are computing more data, faster than we can manage.

Ref: Rob Ross, Visualization and Parallel I/O at Extreme Scale, SciDAC '08

More than Peak FLOPS: disk I/O rate limits analysis capability. Data that is not stored can't be analyzed.

Normalized Storage / Compute Metrics

Machine	Storage B/W (GB/s)	FLOPS (Pflop/s)	Flops per byte stored
LLNL BG/L	43	0.6	O(10 ⁴)
Jaguar XT4	42	0.3	O(10 ⁴)
Intrepid BG/P	50	0.6	O(10 ⁴)
Roadrunner	50	1.0	O(10 ⁵)
Jaguar XT5	42	1.4	O(10 ⁵)

- -The average flops per byte of parallel I/O disk access today is between 10,000 and 100,000
- -In 2001, this number was approximately 500. Ref: John May, 2001.
- -DOE science applications generate results at an average rate of 40 flops per byte of data. Ref: Murphy et al. ICS'05.

Percent Saved of Computed Data

Code	Domain	% Saved	PI	
FLASH	Astrophysics	10	10 Ricker	
Nek5000	CFD	1	Fischer	
CCSM	Climate	1	Jacob	
GCRM	Climate	10	Cram	
S3D	Combustion	1-5	Bennett	

Ref: CScADS Scientific Data Analysis & Visualization Workshop '09

- -Applications can only afford to save between 1-10% of what they compute.
- -With postprocessing, what is not saved cannot be analyzed.

Our Science Workflow Cannot Scale Indefinitely

The increasing demands for analysis and visualization can be met by performing more analysis and visualization tasks directly on supercomputers traditionally reserved for simulation.

- -Potential benefits: Increased overall performance, reduced cost, tighter integration of analysis and visualization in computational science.
- -Potential drawbacks: Reduced per-core performance, increased load on computing resources, potential to crash computations.

Parallel Volume Rendering

Volume rendering of shock wave formation in core-collapse supernova dataset, courtesy of John Blondin, NCSU. Structured grid of 1120³ data elements, 5 variables per cell.

Angular momentum at time-step 1403

Pressure at time-step 1530

Entropy over 100 time-steps

Angular momentum at time-step 1492

Parallel Volume Rendering Algorithm

Parallel structure for volume rendering algorithm consists of 3 stages performed in parallel

Parallel Volume Rendering on the IBM Blue Gene/P. EGPGV'08.

Performance: Total and Component Time

Total frame time and individual component times. Raw data format, 1120³, image size 1600².

Time Distribution

The relative percentage of time in the stages of volume rendering as a function of system size.

Large visualization is primarily dominated by data movement: I/O and communication.

Performance: Large-scale Results

Volume Rendering End-to-End Performance

Grid Size	Time- step size (GB)	Image size (px)	# Procs	Tot. time (s)	% I/O	Read B/W (GB/s)
2240 ³	42	2048 ³	8K	51	96	0.9
			16K	43	97	1.0
			32K	35	96	1.3
4480 ³	335	4096 ³	8K	316	96	1.1
			16K	272	97	1.3
			32K	220	96	1.6

Scalability over a variety of data, image, and system sizes. A number of performance points exist for each data size.

Parallel Image Compositing

The final stage in sort-last parallel visualization algorithms:

- I. Partition data among processes
- 2. Visualize local data

Direct-Send Optimization

Direct-send compositing time improved up to 30X. I 120³ data volume, 1600² image size.

Usually in direct-send, n = m, but setting m < n can reduce contention when n is large. On average, $O(m * n^{1/3})$ total messages, can get down to O(n) if $m = n^{2/3}$.

End-to-End Study of Parallel Volume Rendering on the IBM Blue Gene/P. ICPP'09

Radix-k Compositing Algorithm

Radix-k: More parallel, managed contention, p does not need to be power of 2

Radix-k Performance

Compositing Time for 8 Mpx Image

Tested at 1, 2, 4, and 8 Mpix. I pixel = 4 floats (16 bytes per pixel) 40% improvement over binary swap at a variety of process counts. Left: p varies from 32 to 1024 in steps of 32. Right: p continues from 1024 to 35,000 in steps of 1024.

Parallel Flow Visualization Algorithm

Parallel structure for flow visualization algorithm consists of iterations of particle tracing and transfer, followed by a rendering stage.

Looking Toward In Situ Analysis & Visualization

Pros Cons

- Reduced data movement
- Access to every data byte
- Native data structures
- Native algorithms
- Custom operations
- Increased accuracy

- Memory footprint
- Application constraints
- Increased complexity
- Expanded / collaborative domain

knowledge

Challenges to Address

- Appropriate analysis / visualization applications
- Programming model
- Execution and use model

Further Reading

- Peterka, T., Goodell, D., Ross, R., Shen, H.-W., Thakur, R.: A Configurable Algorithm for Parallel Image -Compositing Applications. <u>Proceedings of SC09</u>, Portland OR, November 2009.
- Peterka, T., Yu, Hongfeng, Ross, R., Ma, K.-L., Latham, R.: End-to-End Study of Parallel Volume Rendering on the IBM Blue Gene/P. <u>Proceedings of ICPP'09</u>, Vienna, Austria, September 2009.
- Peterka, T., Ross, R. B., Shen, H.-W., Ma, K.-L., Kendall, W., Yu, H.: Parallel Visualization on Leadership Computing Resources. <u>Journal of Physics: Conference Series SciDAC 2009</u>, June 2009.
- Peterka, T., Ross, R., Yu, H., Ma, K.-L., and Girado, Javier: Autostereoscopic Display of Large-Scale Scientific Visualization. Proceedings of IS&T/SPIE SD&A XX Conference, San Jose CA, January 2009.
- Peterka, T., Ross, R., Yu, H., Ma, K.-L.: Assessing Improvements to the Parallel Volume Rendering Pipeline at Large Scale. SC08 Ultrascale Visualization Workshop, Austin TX, November 2008.
- Ross, R. B., Peterka, T., Shen, H.-W., Hong, Y., Ma, K.-L., Yu, H., Moreland, K.: Parallel I/O and Visualization at Extreme Scale. <u>Journal of Physics: Conference Series SciDAC 2008</u>, July 2008.
- Peterka, T., Yu, H., Ross, R., Ma, K.-L.: Parallel Volume Rendering on the IBM Blue Gene/P. <u>Proceedings</u> of <u>Eurographics Symposium on Parallel Graphics and Visualization 2008</u> (EGPGV'08) Crete, Greece, April 2008.

... for a brighter future

Moving Analysis to the Data: Scalable Visualization Using Simulation Resources

Acknowledgments:

Hongfeng Yu, Wes Kendall, Rob Latham, Dave Goodell, Kwan
-Liu Ma, Rob Ross, Han-Wei Shen, Rajeev Thakur
John Blondin, Tony Mezzacappa

Argonne and Oak Ridge Leadership Computing Facilities

US DOE SciDAC UltraVis Institute

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

SIAM Minisymposium February 26, 2010 Tom Peterka

tpeterka@mcs.anl.gov

Mathematics and Computer Science Division